
Distributed constraint satisfaction: a literature

review

Angel F. Garcia Contreras

August 10, 2015

Abstract

(Pending)

1 Introduction

Decision-making is the process through which a person selects on course of
action among multiple alternative scenarios. People carry out decision-making
processes as part of their daily lives: selecting which clothes to wear, food to
eat, routes to take while driving, among many others. This internal process is
driven by criteria: weather influences the type and number of garments to wear,
food allergies and health concerns affect a person’s dietary preferences, and the
city traffic makes certain streets and routes more preferable than others.

For these mundane decisions, the process is for the most part simple and
straight-forward. However, there are decisions that require additional planning,
often aid by tools and techniques. Sometimes these problems have too many or
too complex parameters; for example, a college student that considers dropping
out of college is influenced by poor academic performance, lack of preparation,
or economic troubles, to name a few. All of these factors can and are often
influenced by others, such as prior academic achievements, economic situation,
employment situation, or even whether the student is a first-generation college
student [3, 32].

Some decision making processes multiple participants to agree on a solution.
For example, a committee of engineering experts belonging to multiple com-
panies are tasked with designing a new manufacturing standard. Each expert
has a set of expected attributes for this standard, which does not necessarily
coincide with the other experts’, and can be in opposition with them. The com-
mittee members must communicate with each other to determine the attributes
of the standard, in order to satisfy the requirements of each expert and their
respective companies. This communication is complex, and even more so when
each expert has knowledge that cannot be shared with the rest of the group,
such as trade secrets; the expert has to try to satisfy his requirements without
giving away private and sensitive information.

1



In this category of decisions that require the negotiation of multiple actors,
there are problems that use little to no human intervention, such as coordinat-
ing communication protocols between computers at multiple locations through
a long-distance network. Each computer knows its own parameters, as well as
the restrictions / constraints it has on said parameters in relation to the com-
munication channels it shares with its neighboring computers. Each computer,
known as an agent, has to determine its parameter value, while communicating
it to its neighbors and revising this knowledge if that value violates a neighbor’s
constraints.

In addition to solving the problem itself, this situation introduces additional
complications: what information is transmitted between agents? How can co-
ordination be guaranteed? How to make sure a solution can be reached without
spending too much time trying to coordinate all the actors? These questions
are the concerns of distributed problem solving, a research area that focuses on
problems spread in a network across multiple decentralized agents that require
coordination and communication.

2 Distributed constraint satisfaction

2.1 Constraint satisfaction problem

A constraint is an expression that defines a relationship between a set of vari-
ables, in the form of a restriction to the possible values of the variables. A
constraint satisfaction problem (CSP) is a model designed to find any / all
value assignments that fulfill a set of constraints [1, 25].

A solution of a constraint satisfaction problem is a set of variable values
within the corresponding variable domains such that all the constraints are
satisfied [1].

Definition 1. A constraint satisfaction problem (CSP) contains a set of n
variables

X = x1, . . . , xn

with respective domain values

D = D1 × . . .×Dn

and a set of m constraints pk(xk1, . . . , xkn) where k ∈ {1, . . .m}, and pk
being an expression that restricts values on X.

2.2 Distributed constraint satisfaction problem

A constraint satisfaction problem is solved in a centralized way. In a distributed
constraint satisfaction problem (DisCSP), the elements of a CSP are distributed
among multiple agents, so each agent holds only a part of the problem. In order
to solve the problem, agents must communicate with each other and coordinate

2



Figure 1: Directed graph of a DisCSP [40]

their efforts to find domain values that satisfy all the constraints of the problem.
The general communication model for DisCSP [40] assumes that:

• An agent send messages to other agents, and only to those whose address
is known. An agent only knows the addresses of those agents that contain
information that the agent needs to solve its part of the problem.

• Messages are transmitted through a network. Due to the nature of the
network, there is a random yet finite delay between one agent sending
a message, and another receiving it; however, these delay will not cause
the messages exchanged between two agents to be out of order, that is all
messages arrive in the order in which they are sent.

The definition of the majority of DisCSP algorithms assumes that the CSP
program can be represented as a constraint graph, with nodes representing
agents that contain a single variable, and binary constraints (that is, constraints
that involve only two variables) as edges. In this model, each agent knows a
variable, as well as the constraints that involve this variable, which means that
the constraints are shared between pares of agents. While this definition is com-
mon in the literature due to its simplicity, it is not the only model: for some
problems, agents can hold more than one variable, have constraints with any
number of variables and have private constraints that do not need to be resolved
through communication. Unless otherwise noted, the DisCSP algorithms pre-
sented in this document use the simple model (one variable per agent, binary
constraints) for definition; the relaxation into more a general model is trivial.

Definition 2. A distributed constraint satisfaction problem (DisCSP) contains
a set of n variables

X = x1, . . . , xn

with respective domain values

3



D = D1 × . . .×Dn

distributed among m agents, such that each agent assigns the value of 1 or
more variables according to a set of o constraints pk(xi, . . . , xj) where the agent
knows some of the variables xi, . . . , xj , and each pk being an expression that
restricts values on xi, . . . , xj

2.3 Algorithms for DisCSP

2.3.1 Synchronous backtracking

The most intuitive method to solve distributed constraint satisfaction problems
is to modify the backtracking algorithms used in non-distributed CSPs. The set
of agents has a total order, and the first agent initiates the search by selecting
a value for its variable, which is added to a partial solution. The agent then
sends this partial solution to the next agent in the order. Each agent reviews
the partial solution and attempts to select a value for its variable that does not
violate the constraints. If the agent finds a consistent value, this is added to
the partial solution and sent to the next agent in the order; if the agent cannot
find an assignment, it backtracks the search by sending a nogood message to the
previous agent. An agent that receives a nogood message removes its previous
assignment from the partial solution and attempts to find a new consistent
value. In general, every agent that receives either a partial solution or a nogood
message assigns a value consistent with the latest partial solution, backtracking
the search only if unable to find such value [43].

While the method is intuitive, it is hardly an effective method. It is no
different from the non-distributed backtracking technique, as both sequentially
attempt to find all assignments that satisfy the constraints. It does not take
advantage of having multiple agents that can compute their own values concur-
rently, and every attempt to find a consistent assignment can result in multiple
messages between two or more agents, increasing the communication time [40].
However, the algorithm is still relevant, as it serves as the basis and inspiration
for other synchronous algorithms.

4



Algorithm 1. Synchronous Backtracking

main:

if agent is first agent

CPA ← new CPA

assign CPA

while not done

if msg.type = stop

stop search

done ← true

if msg.type = backtrack

remove last assignment

assign CPA

if msg.type = CPA

assign CPA

assign CPA:

CPA ← assign local value(msg.CPA)

if is consistent(CPA)

if is full(CPA)

return solution(CPA)

stop search

else

send(CPA,next agent)

else

do backtrack

do backtrack:

if agent is first agent

CPA ← no solution

stop search

else

send(backtrack,previous agent)

stop search:

send(stop,all agents)

done ← true

2.3.2 Synchronous conflict-based backjumping

Maintaining a synchronous approach, the main improvement of synchronous
backtracking lies in reducing the number of messages passed between agents.
One technique that has proven to be effective is a distributed implementation
of conflict-based backjumping [24]. In this improved algorithm, synchronous

5



conflict-based backjumping (SynCBJ), each agent maintains a conflict set of
previous agents’ variables that have caused conflicts (nogoods) with the agent’s
variable. Using this conflict set, the agent who cannot find an assignment can
send the nogood message directly to the agent responsible for the error [43],
along with a partial solution with the conflicting variable values eliminated. The
recipient of the nogood message reassigns its value and proceeds as usual, with
the variable values eliminated from the partial solution being re-added as the
search continues, and any inconsistent values are reevaluated. The method has
the same lack of parallelism as synchronous backtracking, but its performance
is considerably better due to the reduced number of messages [43].

Algorithm 2. Synchronous conflict-based backjumping

main:

if agent is first agent

CPA ← new CPA

assign CPA

while not done

if msg.type = stop

stop search

done ← true

if msg.type = backtrack

remove last assign‘ment

conflict set ← (value,msg.conflict set) ∪ conflict set

assign CPA

if msg.type = CPA fwd

assign CPA

assign CPA:

CPA ← assign local value(msg.CPA)

if is consistent(CPA)

if is full(CPA)

return solution(CPA)

stop search

else

send(CPA fwd,CPA,next agent)

else

do backtrack

6



Algorithm 2. Synchronous conflict-based backjumping (cont’d)

do backtrack:

if agent is first agent or (domain is empty and conflict set is empty)

CPA ← no solution

stop search

else

backjump agent ← get closest prev agent(conflict set)

send(backtrack,conflict set,backjump agent)

stop search:

send(stop,all agents)

done ← true

2.3.3 Asynchronous backtracking

To make the backtracking algorithm asynchronous, that is to enable the agents
to assign and revise their values concurrently, the first change lies in the com-
munication model. Asynchronous backtracking (ASB) works by introducing an
additional message in addition to the nogood from the synchronous version, an
ok? message that asks for confirmation. Like synchronous backtracking, the
agents are also ordered. However, this order only exists to give priority to some
agents over others whenever there needs to be a value revision in order to avoid
infinite processing loops in which a change in one agent triggers a series of
changes in other agents that eventually lead to a change in the original agent.
Each agent also maintains an agent view which records the values received by
the agent from its neighboring agents. Another important assumption of this
algorithm is that all constraints are directed, so when an agent assigns its value
it sends the assignment as an ok? message to an evaluating agent that checks
for consistency based on its value and agent view [39, 40].

When the algorithm starts, all agents assign an initial value, communicate
these to their respective neighbors in the form of an ok? message and wait for
incoming messages. Upon receiving a value, the evaluating agent stores it in its
agent view, checking the consistency of the agent view against its own value. If
it is not consistent, the agent tries to change the value so it is consistent with
its agent view. If there is no value that can be consistent with the agent view,
the agent sends a nogood message to one of the neighbors that originally sent
their value [39, 40].

The asynchronous nature of this algorithm introduces other problems: the
messages an agent receives may no longer be relevant to the previous agent view.
In particular, a nogood reply may be received after the agent changed its value
in response to a nogood from another agent. To correct this, each nogood mes-
sage also includes the context, that is the agent view, in which the nogood was
generated. The agent receiving the error context compares it to its own value
and agent view, initiating a value update only if the value and view are compat-
ible with the error context, that is the variables and values stored in both are

7



the same. Additionally, an agent can identify implicit constraints with other
agents, when it receives an unknown agent’s variable and value inside an error
context. With this, the agent can request to create a link/constraint with the
previously-unknown agent, thus enabling them to communicate [39, 40].

The algorithm will find a solution when the system becomes stable, that is all
the agents no longer need to send any message and are in a waiting state. If there
are no solutions, eventually an agent in the set will send a nogood with an empty
context, which implies that all possible assignments lead to contradictions [39,
40].

This algorithm is one of the cornerstones of the field, becoming the basis for
many other algorithms in both DisCSP and distributed constraint optimization.
To this day it is still used as a comparison metric in simulations against other
newer algorithms.

Algorithm 3. Asynchronous backtracking

main:

agent value ← assign new value

while not done

if msg.type = ok?

agent view.add(msg.sender id,msg.sender value)

if not consistent(agent view,agent value)

agent value ← assign new value

if agent value is null

do backtrack

for each neighbor agent in outgoing links

send(ok?,(agent id,agent value),neighbor agent)

if msg.type = nogood

nogood view = msg.nogood

for each unknown agent in nogood view not in outgoing links

request link(unknown agent.id, agent id)

agent view.add(unknown agent.id,unknown agent.value)

if not compatible(agent view,agent value)

send(ok?,(agent id,agent value),msg.sender id)

else

agent value ← assign new value

if agent value is null

do backtrack

for each neighbor agent in outgoing links

send(ok?,(agent id,agent value),neighbor agent)

8



Algorithm 3. Asynchronous backtracking (cont’d)

do backtrack:

nogoods ← obtain inconsistencies(agent view)

if nogoods = null

broadcast no solution

done ← true

else

for each inc assignment in nogoods

id,value ← select largest id(inc assignment)

send(nogood,(agent id,inc assignment),id)

agent view.remove(id,value)

2.3.4 Asynchronous weak-commitment search

An expansion and revision of asynchronous backtracking, the asynchronous
weak-commitment search algorithm uses a similar set of message, albeit handled
differently and with additional information.

First of all, unlike ASB, agents in weak-commitment search send their vari-
able values to all neighbors, not just the ones with lower priority order. Instead
of a static total ordering, all agents keep a priority value that changes dynam-
ically. This non-negative integer is initially set to 0 and sent to all neighbors
along with the initial variable value assignment in the first ok? message. When
two neighbor agents have the same priority, this value is updated according to
the identifier of the agents [40, 35, 36].

When an agent receives an ok? message from a higher-priority neighbor
that is not consistent with its agent view, the agent will attempt to update its
value so it is consistent with the higher priority neighbors, and also minimizes
constraint violations with lower priority neighbors. If such a value is found,
the agent sends an ok? message to all its neighbors with the corresponding
update [40, 35, 36].

If the agent cannot find a value, it sends nogood messages to other agents
and increases its priority by 1. However, due to the asynchronous nature of the
messages it is possible to receive a repeated nogood message from other agents.
In order to avoid this repetition, in addition to their agent view, the agents also
keep track of all generated and received nogoods. If an agent cannot change
its value, it checks the list of previously generated nogoods and if the current
nogood has been received before, the agent does not send a new nogood message,
nor does it update its priority [40, 35, 36].

9



Algorithm 4. Asynchronous weak-commitmment search

main:

agent value ← assign new value

while not done

if msg.type = ok?

agent view.add(msg.sender id,msg.sender value,msg.sender priority)

check agent view

if msg.type = nogood

nogood list.add(msg.nogood)

for each (id,value,priority) in nogood list where id is not in neighbors

neighbors.add(id)

agent view.add(id,value,priority)

check agent view

check agent view:

if not consistent(agent view,agent value)

new value ← new violation min value

if new value is null

do backtrack

else

agent value ← new value

for each neighbor agent in outgoing links

send(ok?,(agent id,agent value,agent priority),neighbor agent)

do backtrack:

nogoods ← obtain inconsistencies(agent view)

if nogoods = null

broadcast no solution

done ← true

if nogoods ∩ nogood sent = null

for each inc assignment in nogoods

nogood sent.add(inc assignment)

for each (id,value,priority) in inc assignment

send(nogood,(agent id,inc assignment),id)

priority max ← get max p(agent view)

agent priority ← priority max + 1

new value ← new violation min value

agent value ← new value

for each neighbor agent in outgoing links

send(ok?,(agent id,agent value,agent priority),neighbor agent)

10



2.3.5 Distributed breakout

The distributed breakout algorithms (DBO) is a family of methods inspired by
the breakout technique [19], which uses weights on the constraints and works
from an initial value to try and minimize the violation on the constraints. The
breakout technique is a local search algorithm, which means its search is not
complete and the solution is just a local minimum [34].

When the algorithm begins, all agents assign an initial value to their vari-
ables, send an ok? message with their initial value to their neighbor agents and
assign aweight to each constraint they are involved with. With the information
of its neighbors and its own value, each agent calculates a cost of the valuation
by aggregating the weighted violation of all its constraints. Each agent calcu-
lates its gain by selecting the maximum possible cost change if the agent were
to modify its value, and proceeds to send this gain to its neighbors in the form
of an improve message. After all agents receive improve messages from all its
neighbors, each agent compares all neighboring gains to its own, and only if an
agent recognizes its gain is the greatest amongst is neighbors, then it updates
its value. If two or more agents have the greatest gain in their neighborhood,
they update their values concurrently [34, 37].

Using this method, the algorithm can find a local minimum value for the
constraint violation of the agents. However, to check if a value assignment is
actually a local minimum the agents would have to communicate with all agents,
by introducing a time-expensive global communication scheme. To avoid this,
the distributed breakout algorithm introduces quasi-local minimum, defined as
a state of the system in which an agent finds violations in its constraints, and
neither the agent nor its neighbors can find a lower cost. When an agent finds
itself at a quasi-local minimum, it attempts a quasi-local breakout operation by
increasing the weights of its violated constraints [37].

So far, the algorithm shows how agents update their values and escape quasi-
local minima. This process of updating and sharing values and gains is called a
round, and the algorithm finds improvements by sequentially executing multiple
rounds. The final piece of this algorithm is a termination condition, a series
of steps carried out at the end of a round. Each agent maintains a counter
initialized to zero. After receiving an ok?, if the agent finds constraint violations,
it sets its counter to zero, otherwise it keeps the counter from the previous round.
Next, all agents share their counter values as part of the improve message. Before
the end of the turn, each agent updates its value to the minimum counter among
its known counters, that is its own counter and its neighbors’. Finally, if neither
the agent nor its neighbors have constraint violations, the counter is updated
by 1. With this, each agent keeps track of the distance with no violations, and
if that distance matches a number that ensures all agents are covered, then the
problem is solved and the algorithm stops [37].

11



Algorithm 5. Distributed breakout

main:

agent value ← select random value

for each constraint in constr list

constraint.weight ← 1

t counter ← 0

round ← 0

for each constraint in constr list

send(ok?,(agent id,agent value),constraint.agent)

while t counter ¡ upper bound

round ← round + 1

neigh values ← collect ok messages

if not consistent(neigh values,agent value)

t counter ← 0

(local changes,cost) ← minimize(constr list,neigh values)

for each constraint in constr list

send(improve,(agent id,t counter,local changes,cost),constraint.agent)

neigh imp ← collect improve messages

t counter ← min(t counter,neigh imp.counters)

if cost = 0 and contains zeroes(neigh imp.costs)

t counter ← t counter + 1

if is quasi local min(constr list,neigh values,cost,neigh imp.costs)

for each constraint in constr lists where constraint.violation > 0

increase(constraint.weight)

if not conflicts(local changes,neigh imp)

agent value ← update value(local changes)

else

agent value ← resolve conflicts(local changes,neigh imp)

for each constraint in constr list

send(ok?,(agent id,agent value),constraint.agent)

2.3.6 Distributed backtracking with sessions

The distributed backtracking with sessions algorithm is a modification of asyn-
chronous backtracking that attempts to improve the classic algorithm by re-
ducing the amount of time each agent has to process messages. It has simi-
lar elements as ABT: all agents contain a value assignment, a priority and an
agent view, and exchange ok? and nogood messages. In distributed backtracking
with sessions, the agents also send a stop message when there is no solution to
the problem and the agents need to stop all execution. The agents also maintain
a session value, a set of proposed values that have already been transmitted in

12



the current session, a set of received backtrack values that includes all values that
have elicited a backtrack request in the current session, and a set of backtrack
requests. The session value is also included in the ok? and nogood messages, as
well as the corresponding session values for each neighbor in the agent view. The
nogood message also includes a backtrack set of agents to continue backtracking
in case the agent cannot find a value that resolves the constraint valuations [17].

At the beginning of the algorithm, all agents set their session value to 0,
initialize empty received backtrack value set and proceed to assign their values
in the same manner as ABT. After initialization, the agents send their first ok?
messages to lower priority neighbors, recording the sent value in the proposed
set. When an agent receives an ok? message, the current session is closed
by incrementing the session value by 1 and emptying the respective proposed
and received backtrack value sets, and then proceeds to process the message in
the same way as ABT. On a nogood message, the agent processes the received
value only if the session value in the nogood message is equal to the agent’s own
session value and the current value is not in the set of received backtracks; if they
are different or the current value has already received a backtrack request, the
message is considered to be obsolete and is ignored. After processing a nogood,
the current agent value is added to the set of received backtracks and, if the
message contains a backtrack set, add it to the backtrack requests. If the agent
cannot change its value, it uses the set of backtrack requests to determine where
to send a new nogood message [17].

Algorithm 6. Distributed backtracking with sessions

main:

agent value ← assign new value

agent session ← 0

while not done

if msg.type = ok?

agent view.add(msg.id,msg.value,msg.session)

close session

check agent view

if msg.type = nogood

if msg.session = agent session and not received bt.contains(msg.value)

received bt.add(msg.value)

total bt.add(msg.bt list)

if msg.value = agent value

agent value ← null

close session

check agent view

13



Algorithm 6. Distributed backtracking with sessions (cont’d)

close session:

agent value ← null

agent session ← agent session + 1

received bt.remove all

for all value in agent domain

propose[value] ← false

check agent view:

if not consistent(agent view,agent value)

new value ← select consistent val(agent view,propose)

if new value is null

do backtrack

else

agent value ← new value

propose[value] ← true

for each neighbor agent in outgoing links

send(ok?,(agent id,agent value,agent session),neighbor agent)

do backtrack:

nogoods ← obtain inconsistencies(agent view)

if nogoods = null

broadcast no solution

done ← true

else

for each inc assignment in nogoods

id,value,session,bt set ← select current(inc assignment,agent session)

send(nogood,(agent id,agent value,agent session,bt set),id)

agent view.remove(id,value,session)

total bt.remove(id,value,session,bt set)

2.3.7 Asynchronous aggregation search

Many DisCSP algorithms work under the assumption that all agents will have
a single variable, and that the model uses binary constraints shared between
agents. Asynchronous aggregation search (AAS) works with a model that na-
tively supports private (internal) constraints and non-binary constraints, which
in turn means that agents can keep track of multiple variables, and some vari-
ables might be shared between agents [30, 29].

The first change is the general agent model. A link between agents represents
two agents that have at least one shared variable. This link is directed, from
the agent with lower priority to the agent with higher priority. The end agents
are those agents with no incoming links. The system agent is a special agent

14



that coordinates the entire process by assigning priority values and announce
search termination [30, 29].

Each agent in AAS keeps track of proposed assignments, which are tuples
representing all the agent’s variables. Additionally, an assignment is not a
singular value, but an aggregation of all values for all of the variables that are
consistent with the agent’s constraints. This means that any time an agent
sends a message, it sends a list of of valid domains. Thus, the solution to
the DisCSP is not given as an evaluation, but as set of domains that contain
solutions. After that, the algorithm behaves like a modified version of ABT,
with each agent building its set of potential assignments based on the received
variables, initiating a backtrack when no assignment can be found, and changing
the set of potential assignments by examining the backtrack request, that is a
nogood message with a set of values that violate the constraints [30, 29].

The other modification of interest is the termination mechanism. ABT ter-
minates only when all agents stop receiving and sending messages. AAS in-
troduces an accepted message, sent by a recipient of an ok? message when the
contents of the values sent in the ok? do not result in an invalid (empty) domain.
The accepted is similar to an ok? message, only instead of sending the values
of the agent, the message includes the intersection of the values contained in
the received ok? message and the agent’s own values. When an agent receives
all accepted messages from its neighbors, the agent has found a solution to its
subset of the problem. If the agent is an agent, it sends its accepted message
to the system agent. Once the system agent has received all accepted messages
from all the end agents, the algorithm has found a solution and will stop [30,
29].

The implementation of this algorithm determines its actual efficiency. The
”aggregation” part of the algorithm is the proposed assignments, depending on
the structure used to store them and the technique used to select the values
that are incorporated into the respective aggregations (for the agent’s values,
as well as the values sent in the nogood messages) [30, 29].

15



Algorithm 7. Asynchronous aggregation search

main:

agent value ← assign new value

while not done

if msg.type = ok?

if history[msg.var].invalidate(msg.hist)

continue

agent view.add(msg.var,msg.value,msg.hist)

reconsider nogoods

check agent view

if msg.type = nogood

nogood view = msg.nogood

agent view.add(known agents(nogood view))

for each unknown agent in nogood view not in outgoing links

request link(unknown agent.id, agent id)

agent view.add((unknown agent.values))

nogood list.add(nogood view)

old agg ← inst agg

check agent view

for all old a in old agg and curr a in inst agg c

if old a = curr a:

send(ok?,(var(curr a),set(curr a),history[curr a]),msg.agent id)

check agent view:

if not is consistent(agent view,inst agg)

valuation ← select consistent agg(curr sol,agent view)

if valuation = null

do backtrack

else

clean(inst agg)

for each agg in valuation

if need multicast(agg)

var ← var(agg)

counter ← increase(counter)

history[agg].append(history[var],counter)

for each neighbor agent in outgoing lp links

send(ok?,(var,set(agg),history[var]),neighbor agent)

inst agg.add(agg)

else if needed(agg)

inst agg.add(agg)

16



Algorithm 7. Asynchronous aggregation search (cont’d)

do backtrack:

nogoods ← obtain inconsistencies(agent view)

if nogoods = null

broadcast no solution

done ← true

else

for each inc assignment in nogoods

id ← select lowest prio(inc assignment)

send(nogood,(agent id,inc assignment),id)

agent view.remove all proposals(id)

reconsider nogoods

check agent view

2.3.8 Asynchronous forward-checking

Asynchronous forward-checking (AFC) is an algorithm that processes partial
assignments synchronously, but does consistency checks by forward-checking
asynchronously. In that respect, it follows a similar process to synchronous
backtracking, by having each agent do partial assignments that are transmitted
to the next agents in the partial order of agents [15].

In this algorithm, agents send a somewhat different set of messages. The
first message is CPA, which carries the current consistent partial assignment
(CPA), sent by an agent that has checked the consistency of the assignments
from previous agents in addition to its own value assignment. The assignment
also includes a step counter, used by the agent in all sent messages as a time
stamp, and is increased only when the agent sends the latest CPA to the next
agent in the order. The step counter is also kept as part of the agent view,
to signify the latest update received. If the agent cannot assign its value and
remain consistent with the received CPA, it sends a backtrack message, which
works like the nogood in synchronous backtracking, to the previous agent in the
order [15].

The second message, FC CPA, is sent by an agent when adding an assign-
ment to the CPA, to all agents that have not yet made an assignment. Through
this message, the algorithm checks the consistency of the assignment against all
future potential assignments, asynchronously and concurrently detecting solu-
tions and invalid assignments. When an agent receives a FC CPA message, it
checks the step counter to see if the message is an updated CPA, or belongs
to an older version that has already been processed and can be ignored. If the
agent receives an update, the agent first checks the consistency of its agent view;
if it’s inconsistent, then the agent marks its view as consistent if the received
CPA does not contain new changes to the view. After this, the agent updates
its view based on the received CPA; however, if this assignment is not possible,

17



that is there is no value that does not violate the constraints, the agent sends a
NotOK message to all unassigned agents along with its view [15].

This NotOK message is used to inform all agents of an inconsistent assign-
ment. The sender includes the shortest inconsistent subset of assignments from
the FC CPA, and the recipients of the NotOK message update their agent views
with this subset of assignments if the received message is newer than the previ-
ous messages and the agent view contains updatable domains [15].

Algorithm 8. Asynchronous forward-checking

main:

if agent is first agent

CPA ← new CPA

assign CPA

while not done

if msg.type = stop

done ← true

if msg.type = FC CPA

forward check

if msg.type = Not OK

process Not OK

if msg.type = CPA or backtrack CPA

receive CPA

assign CPA:

CPA ← assign local value(msg.CPA)

if is assigned(CPA)

if is full(CPA)

return solution(CPA)

stop search

else

CPA.step ctr ← CPA.step ctr + 1

send(CPA,next agent)

for each un agent in unassigned agents

send(FC CPA,un agent)

else

agent view ← shortest inconsistent part assignment

do backtrack

18



Algorithm 8. Asynchronous forward-checking (cont’d)

do backtrack:

if agent is first agent

send(stop,all agents)

done ← true

else

agent view.consistent ← false

back agent ← last(agent view)

CPA ← agent view

send(backtrack CPA,back agent)

receive CPA:

CPA ← msg.CPA

if not agent view.consistent

if CPA.contains(agent view)

do backtrack

else

agent view.consistent ← true

if agent view.consistent

if msg.type = backtrack CPA

remove last assignment

assign CPA

else

if update agent view(CPA)

assign CPA

else

do backtrack

forward check:

if msg.step ctr > agent view.step ctr

if not agent view.consistent

if not CPA.contains(agent view)

agent view.consistent ← true

if agent view.consistent

if not update agent view(FC CPA)

for each un agent in agent view.unassigned

send(Not OK,un agent)

19



Algorithm 8. Asynchronous forward-checking (cont’d)

process Not OK:

if agent view.contains(Not OK)

agent view ← Not OK

agent view.consistent ← false

else if not Not OK.contains(agent view)

if msg.step ctr > agent view.step ctr

agent view ← Not OK

agent view.consistent ← false

update agent view(partial assignment):

if adjust agent view(partial assignment) = null

agent view ← shortest inconsistent part assignment

return false

return true

2.3.9 Distributed stochastic search

The family of distributed stochastic search (DSA) algorithms works similar to
asynchronous backtrack. There are two main differences: there is no backtrack,
and all value selection is based on a stochastic process [41].

Initially, all agents concurrently and randomly select an initial value and
send it to their neighbors. After sending values, agents receive values from their
neighbors and determine whether they change their internal values based on
stochastic probabilities and degree of constraint violation (values that result in
lower constraint violations are more likely to be selected / kept). The differences
from one DSA to another are the strategy used to determine the stochastic
probabilities, and the termination conditions used to stop the execution [41].

Algorithm 9. default

Distributed stochastic search main:

agent value ← select random value

while not done

if is new value(agent value) for each neighbor in neighbors list

send(agent value,neighbor)

new values ← receive values

agent view.update(new values)

check termination

update value(agent value)

20



2.3.10 Concurrent dynamic backtracking

Concurrent dynamic backtracking (ConcDB) is a search algorithm that seeks to
exploit concurrency as much as possible. In this algorithm, all agents process
consistent partial assignments (CPAs) by assigning their variable values that
do not violate constraints with variables that already exist in the CPA. Unlike
other distributed algorithms, ConcDB has no priority ordering, so each agent
selects the destination of the new CPA randomly from the set of neighbors with
unassigned values. If the agent cannot find a value that does not violate the
constraints, it backtracks the CPA to the original sender [42].

The innovation of this algorithm lies in its concurrent search. The initial-
izing agent creates 2 or more search processes (SPs), assigning different values
from its domain to each respective SP, so each process is a search through dif-
ferent subspaces of the domain. The agent, then, sends a CPA message to two
randomly selected, different agents, including the SP and a step counter into
each message [42].

When receiving and sending CPAs, each agent keeps track of which assign-
ments it has made to which SP to process potential backtrack messages, as well
as which domain values are removed and why they are removed from the poten-
tial assignments to the CPA (an eliminating explanation). Additionally, every
time the agent sends a CPA, including every time an agent sends one on a back-
track message, the step counter is increased by 1. An agent that receives a CPA
with a step counter greater than a predefined step limit has to split its domain
into 2 or more new search processes, just as an initializing agent would [42].

If an agent removes all of its potential assignments to the CPA, the it sends
a nogood message based on the eliminating explanations of that invalid assign-
ment. The recipient of this message selects a new value to assign to the CPA,
if able, along with a new SP identifier, creates a new unsolvable message that is
propagated to the originator of the SP that generated the CPA, and shares the
new SP identifier with all agents that had previously processed the CPA with
the old SP that was marked as unsolvable [42].

21



Algorithm 10. Concurrent dynamic backtracking

main:

if agent is first agent

initialize SPs

while not done

if msg.type = split

perform split

if msg.type = stop

done ← true

if msg.type = backtrack or CPA

receive CPA

if msg.type = unsolvable

mark unsolvable(msg.SP)

assign CPA:

CPA ← assign local value(msg.CPA)

if is consistent(CPA)

if is full(CPA)

return solution(CPA)

stop

else

send(CPA,next agent)

else

do backtrack

do backtrack:

origin SP.split set.delete(CPA.ID)

if origin SP.split set.is empty

if agent is first agent

CPA ← no solution

if(active CPAs.is empty)

return solution(null)

stop

else

send(backtrack,inconsistent assignment,last assignee)

else

mark fail(CPA)

stop:

send(stop,all agents)

done ← true

22



Algorithm 10. Concurrent dynamic backtracking (cont’d)

assign CPA:

CPA ← msg.CPA

if first received(CPA.ID)

create SP(CPA.ID)

if CPA.generator = agent id

CPA.steps ← 0

else

CPA.steps ← CPA.steps + 1

if CPA.steps == steps limit

splitter id ← select splitter

CPA.steps ← 0

send(split,splitter id)

if msg.type = backtrack

remove last assignment

assign CPA

perform split:

if not backtracked(CPA)

var ← select split var

if var 6= null

create split SP(var)

create split CPA(SP.ID)

origin SP.split set.add(CPA.ID)

assign CPA

else

send(split,next agent) initialize SPs:

for i ← 1 to domain size

CPA ← create CPA(i)

SP[i].domain ← first var[i]

create SP(CPA.ID)

assign CPA

mark unsolvable(SP):

SP.unsolvable ← true

send(unsolvable,SP.next agent)

for each split in SP.origin.split set split.unsolvable ← true

send(unsolvable,split.next agent)

23



Algorithm 10. Concurrent dynamic backtracking (cont’d)

check SPs(inc assignment):

for each sp in all SPs where sp 6= current SP

if sp.contains(inc assignment)

send(unsolvable,sp.next agent)

remove last assignment(last sent CPA)

CPA ← last sent CPA

rename SP(sp)

assign CPA

receive CPA:

CPA ← msg.CPA

if msg.SP.unsolvable

terminate(msg.SP)

else

if first received(CPA.ID)

create SP(CPA.ID)

if CPA.generator = agent id

CPA.steps ← 0

else CPA.steps ← CPA.steps + 1

if CPA.steps = steps limit

splitter id ← CPA.generator

send(split,splitter id)

if msg.type = backtrack

check SPs(CPA.inconsistent assignment)

remove last assignment(last sent CPA)

CPA ← last sent CPA

if sp.split ahead

send(unsolvable,sp.next agent)

rename SP(sp)

assign CPA

2.3.11 Speculative distributed constraint logic programming

The field of DisCSP focuses mostly on numerical constraint satisfaction. How-
ever, centralized constraint solving has other paradigms and languages that
solve different problem domains. Constraint logic programming extends logic
programming with constraint satisfaction concepts. Constraints and domains
are represented as part of rules composed of atoms that are either constraints
or queries. The interpreter sequentially analyzes and checks each element in
the goal of the program, a logical expression composed of multiple atoms. On
finding a query, the interpreter consults with other rules that have the form

24



of the query, substituting the unknown information with data from the other
queries. If the query has multiple results, only one is returned at a time. When
it finds a constraint, it is added ot a constraint store that keeps track of all
constraints, and checks whether the latest queries produce valid variable assign-
ments according to all constraints found so far. If the interpreter finds that the
constraints are not satisfied, it backtracks in order to obtain the next result from
previous queries. If the constraint store is satisfied, execution continues. The
program terminates when there are no more atoms to check in the goal and all
constraints are satisfied, which means a solution has been found, or when all
queries have been exhausted without finding an assignment that satisfies the
constraints in the store, returning a failure, or no solution [8].

In a distributed version of this process, the executing agents has only a
partial set of queries from the entire problem. When an agent encounters a query
that cannot be resolved by itself, the query is forwarded to an agent that can
return an answer. Originally, the asking agent has to wait for an answer before
progressing with its execution, otherwise it would not be able to fulfill its own
queries and validate its constraints. In speculative distributed constraint logic
programming [4], the program assigns default values to the unknown variables
involved in external (askable) queries, and continues its execution normally.
When the agent receives the answer to a query, it revises existing information.

The main objects used for this model are process and answer entry. Processes
correspond to alternative computations, generating a new one whenever a new
line of computation is encountered, by assigning default values, splitting cases
or receiving an answer. Each process has a designated goal, and the process is
finished successfully when there are no more atoms and constraints to process in
the goal, or with a failure when the default constraints contradict the recently
returned answers. Answer entries keep track of answers of previously-asked
queries; each answer has an id used to distinguish between revisions to previous
answers, or an entirely new answer, which in turn creates a new process. When a
new process is created, a default process is kept suspended in order to reconstruct
the original, while the newly created process is executed normally. This means
that for every computation decision point, two new processes are created: the
default suspended process, and the process that will be executed. This creates
a computation tree; however, the main advantage of this algorithm is that not
all processes are kept in memory, only the leaves of the computation tree [4].

25



Algorithm 11. Speculative distributed constraint logic programming

main:

default proc ← new process()

default proc.body ← rules

proc list.add(default proc)

process reduction(msg)

while proc list != :

msg ← receive msg()

if msg.type = query init:

init q ← msg.query

default proc ← new process()

default proc.body ← init q

proc list.add(default proc)

process reduction(msg)

else if msg.type = query:

process reduction(msg)

else if msg.type = answer:

fact arrival(msg)

26



Algorithm 11. Speculative distributed constraint logic programming (cont’d)

fact arrival(msg):

ans ← answers.get(msg.query,msg.ans id)

if ans = null:

ans ← answers.add ans(msg.query,msg.ans id,msg.constr,)

for each def ans in answers.get default answers(msg.query):

for each proc in proc list where proc.id is in def ans.process list:

if proc.finished and proc.constraint != (proc.constraint and msg.constr):

send(answer,(proc.query,proc.id,proc.constraint and msg.constr),msg.id)

if proc.is ordinary:

proc.wait list.add(msg.query,def ans.id)

proc.answer list.remove(msg.query,def ans.id)

if consistent(msg.constr and proc.constr):

newProc ← new process()

newProc.constraint ← msg.constr and proc.constr

newProc.goal st ← proc.goal st

newProc.wait list ← proc.wait list

newProc.answer list ← proc.answer list

newProc.answer list.add(msg.query,ans.id)

newProc.answer list.remove(msg.query,def ans.id)

proc list.add(newProc)

ans.process list.add(newProc.id)

orig ans ← answers.get(msg.query,true,o)

for each proc in proc list where proc.id in orig ans.process list and consistent(msg.constr and proc.constr and not ans.constr):

newProc ← new process()

newProc.constraint ← msg.constr and proc.constr and not ans.constr

newProc.goal st ← proc.goal st

newProc.wait list ← proc.wait list

newProc.wait list.remove(msg.query,o)

newProc.answer list ← proc.answer list

newProc.answer list.add(msg.query,ans.id)

proc list.add(newProc)

ans.process list.add(newProc.id)

else:

ans.constr ← msg.constr

ans.proc list ← msg.proc list

for each proc in ans.proc list:

if proc.finished and proc.constraint != (proc.constraint and msg.constr):

send(answer,(proc.query,proc.id,proc.constraint and msg.constr),msg.id)

if proc.is ordinary:

if consistent(ans.constr and proc.constr):

proc.constr ← ans.constr and proc.constr

else:

proc list.remove(proc)

ans.proc list.remove(proc)

orig ans ← answers.get(msg.query,true,o)

for each proc in proc list where proc.id in orig ans.process list and consistent(msg.constr and proc.constr and rules.goals consistent):

newProc ← new process()

newProc.constraint ← msg.constr and proc.constr and rules.goals consistent

newProc.goal st ← proc.goal st

newProc.wait list ← proc.wait list

newProc.wait list.remove(msg.query,o)

newProc.answer list ← proc.answer list

newProc.answer list.add(msg.query,ans.id)

proc list.add(newProc)

ans.process list.add(newProc.id)

27



Algorithm 11. Speculative distributed constraint logic programming (cont’d)

process reduction(msg):

proc ← proc list.select(msg.query,wait list = null)

if proc != null:

if proc.goal st = null:

send(answer,(init q,proc.id,proc.constraint),msg.id)

proc.query ← init q

proc.finished ← True

else:

atom ← select atom(proc.goal st)

if not atom.is askable:

for every rule in rules:

if atom = rule.head and consistent(proc.constraint and rule.constraints)

newProc ← new process()

newProc.constraint ← proc.constraint and constraint(atom = rule.head) and rule.constraints

newProc.goal st ← rule.body.union(proc.goal st).remove(atom)

newProc.answer list ← proc.answer list

for every ans in proc.answer list:

ans.process list.add(newProc.id)

proc list.add(newProc)

for every ans in proc.answer list:

ans.process list.remove(proc.id)

proc list.remove(proc)

else if atom.is askable:

if answers.get ordinary answers(atom) =

for each rule in rules where rule.is default and consistent(proc.constraint and rule.constraint):

newProc ← new process()

newProc.constraint ← proc.constraint and rule.constraint

newProc.goal st ← proc.goal st.remove(atom)

newProc.answer list ← proc.answer list

newProc.answer list.add(atom,rule.id)

ans ← answers.get(atom,rule.id)

if ans != null:

ans.process list.add(newProc.id)

else:

answers.add ans(atom,ans.id,ans.constraint,newProc)

for every ans in proc.answer list:

ans.process list.add(newProc.id)

proc list.add(newProc)

else:

for each o ans in answers.get ordinary answers(atom) where consistent(proc.constraint and o ans.constraint):

newProc ← new process()

newProc.constraint ← proc.constraint and o ans.constraint

newProc.goal st ← proc.goal st.remove(atom)

newProc.answer list ← proc.answer list

newProc.answer list.add(atom,o ans.id)

for every ans in proc.answer list:

ans.process list.add(newProc.id)

proc list.add(newProc)

orig ans ← answers.get(atom,true,o)

if orig ans != null:

orig ans.process list.add(proc.id)

else:

answers.add ans(atom,o,true,proc.id)

send(query,atom.question,atom.target id)

proc.wait list ← (atom,o)

28



Algorithm 11. Speculative distributed constraint logic programming (cont’d)

3 Distributed constraint optimization

3.1 Distributed constraint optimization problem

DisCSP problems are solved when all agents find a value in their domains that
does not violate their constraints. However, not all problems have domains and
constraints that can result in a set of values that does not violate the constraints.
Not all problems are that well conditioned, and in some cases the best possible
solution lies in minimizing the number of violated constraints. The need to solve
DisCSP problems that seek to minimize the cost of constraint violations is the
motivation behind the distributed constraint optimization problem (DCOP) was
developed [12].

A DCOP has a set of variables and associated cost functions distributed
among multiple agents, such that each agent holds one or more variables and
their respective cost functions, which may involve unknown variables from other
agents. Unlike DisCSP, the DCOP model assumes that the communication
between agents occurs to satisfy the value needs for the cost functions in all
agents. This means that a cost function can be private for an individual agent,
communicating only the values of the variables necessary to compute the cost
function. Most DCOP algorithms assume a communication model in which each
agent holds a single variable and one or more cost functions that determine the
communication channels that exist between agents. Extending this model to a
more general one is trivial.

Definition 3. A distributed constraint optimization problem (DCOP) contains
a set of n variables

X = x1, . . . , xn

with respective domain values

D = D1 × . . .×Dn

distributed among m agents, such that each agent assigns the value of 1 or
more variables, and each agent holds a set of o cost functions fk(xi, . . . , xj)
where the agent knows some variables in xi, . . . , xj , with the objective of mini-
mizing the sum of all cost functions from all agents.

3.2 Algorithms for DCOP

This section describes known algorithms to solve DisCSP. Unless otherwise spec-
ified, all these algorithms makes the following assumptions:

• All agents hold a single variable

29



• All agents have cost functions that may or may not involve other agents’
variables

• The objective is to minimize the sum of the costs of all agents

3.2.1 Synchronous branch and bound

Just like synchronous backtracking in DisCSP, synchronous branch and bound
(SynchBB) is a straightforward adaptation of a non-distributed algorithm into
a distributed environment. Branch and bound is an optimization algorithm that
branches the space of the domain, limiting the space of the search, and uses an
upper bound of an objective / cost function to determine whether a domain /
assignment is an improvement over previous assignments.

As a synchronous algorithm, SynchBB is strictly sequential, so the agents
have a total order relation between them. Agents communicate by sending paths
composed of domain assignments, with the first agent sending its initial value
only, as well as a known upper bound for the objective function, which is often
the sum of all constraint violations in the set of agents [7].

When an agent receives a path, it evaluates the path in addition with the
next value of its own variable domain (the first value, if it is the first path
received), obtaining the cost of selecting that value. If the cost evaluation is
less than the current upper bound, that cost valuation becomes the new upper
bound, and the agent sends an updated path with its selected value, along with
the new upper bound, to the next agent in the order. If a value selection results
in a value that does not improve the upper bound, the agent sequentially tries
more values from its domain until it finds one that improves the cost. If the
agent cannot find such a value, then the agent sends a backtrack message to the
previous neighbor in the order [7].

Upon receiving a backtrack message, an agent selects the next value in its
domain, following the same procedure as when receiving the path from the
previous agent in the order: the agent finds for a value+path combination that
improves the upper bound, sending the improved path to the next agent in the
order, or sending a backtrack message if no such evaluation can be found [7].

30



Algorithm 12. Synchronous branch and bound

main: if agent is first agent

agent value ← select first value

upper bound ← select upper bound

previous path ← null

counter ← 0

send(value,path(agent id,agent value,counter),upper bound,next agent)

while not done

if msg.type = value

previous path ← msg.path

upper bound ← msg.ub

next ← get next(domain)

send value

if msg.type = backvalue

next counter ← msg.path.get next value

upper bound ← msg.ub

next ← get next(domain.remove previous(agent value))

send value

send token: if next 6= null

if last agent

next to next ← next

while next to next 6= null

if new path.get max nv < upper bound

upper bound ← new path.get max nv

best path ← new path

if upper bound = 0

done ← true

terminate

next to next ← get next(domain.remove previous(next to next))

send(backvalue,previous path,upper bound,previous agent)

else

send(value,new path,upper bound,next agent)

else if agent is first agent

done ← true

terminate

else

send(backvalue,previous path,upper bound,previous agent)

31



Algorithm 12. Synchronous branch and bound (cont’d)

get next(value list): if value list = null

return null

else

val ← value list.pop

new path ← null

counter ← 0

if check(previous path)

return val

else

return get next(value list)

check(path): if path = null

new path.add(agent id,agent value,counter)

return true

else

(p id,p value,next counter) ← path.pop

if not consistent((agent id,agent value),(p id,p value))

counter ← counter + 1

if counter ≥ upper bound or next counter + 1 ≥ upper bound

return false

else

new path.add(p id,p value,next counter + 1)

return check(path)

else

new path.add(p id,p value,next counter)

return check(path)

3.2.2 ADOPT

Asynchronous distributed optimization (ADOPT) is the first distributed, com-
plete and asynchronous algorithm for DCOP. The method assumes that the
agents follow a depth-first search tree structure, with every agent having one
parent agent and one or more children agents. All agents exchange three types
of messages: VALUE messages containing variable assignments are sent down
the tree; COST messages containing the cost information of each agent and its
children are sent up the three; THRESHOLD messages are sent from a parent
agent to change the backtrack threshold of its children. In addition, the algo-
rithm uses an interval-based mechanism for termination, by keeping track of
a lower and upper bounds on the cost, ending the search when the difference
between them is zero [16].

All agents begin by concurrently choosing a value for their variable. Next,

32



all non-leaf agents send VALUE messages to their children. An agent that
receives a VALUE message stores it in its context, a partial solution that contains
information about an agent’s higher neighbors. After receiving a parent value,
the agent calculates the cost of those value assignments in addition to the cost
received from its children (through COST messages) in the form of an upper
bound and a lower bound, creates two new bounds based on its own domain and
the received values, and sends its own COST message containing the agent’s
context, and calculated lower and upper bounds. Leaf nodes always have lower
and upper bounds equal to their values [16].

An agent’s backtrack threshold is used to change its value. If the calculated
lower bound on the cost of the agent’s value assignment is greater than the
threshold, then the agent attempts to change its value to one that produces a
reduced lower bound. The threshold must be updated if no such value exist,
which is to say, the agent determines that the interval cost of its subtrees does
not contain the threshold. When an agent is forced to change the threshold due
to the sum of the costs from its children, it also sends this sum as a THRESH-
OLD message; the child agent that receives this message uses it to rebalance
and distribute amongst its children satisfying a series of rules. This means each
parent agent changes its children’s thresholds to avoid overestimating the cost
of the subtrees, as well as reconstruct threshold-abandoned solutions [16].

On its own, ADOPT is a very elegant algorithm with serious communication
deficiencies, requiring many messages to ensure completeness. Many improve-
ments have been made to the algorithm, resulting in new methods. ADOPT-
ng [28] changes the communication model to enhance the cost message by incor-
porating nogood information, incorporates the add-link message found in ABT,
and eliminates the need for a total order in the agents. BnB-ADOPT [33] is a
variant of ADOPT that incorporates branch-and-bound and depth-first search
techniques into ADOPT to improve the performance of the algorithm, in par-
ticular by pruning search nodes that cannot possibly improve the cost value.

33



Algorithm 13. Asynchronous distributed optimization (ADOPT)

main:

threshold ←
curr context ← null

for all v in domain and agent in children

lb[v,agent] ← 0

t[v,agent] ← 0

ub[v,agent] ← infinity

context[v,agent] ←
agent value ← minimize LB(domain)

do backtrack

while not done

if msg.type = threshold

if msg.context.compatible(curr context)

threshold ← msg.t

maintain t invariant

do backtrack

if msg.type = terminate

terminate ← true

curr context ← msg.context

do backtrack

if msg.type = value

if not terminate

curr context.add(msg.id,msg.value)

for all v in domain and agent in children

if not context[v,agent].compatible(curr context)

lb[v,agent] ← 0

t[v,agent] ← 0

ub[v,agent] ← infinity

context[v,agent] ←
maintain t invariant

do backtrack

34



Algorithm 13. Asynchronous distributed optimization (ADOPT) (cont’d)

if msg.type = cost

c val ← msg.context[agent id]

msg.context.remove(agent id,c val)

if not terminate

for all (id,val) in msg.context where not neighbors.contains(id)

curr context.add(id,val)

for all v in domain and agent in children

if not context[v,agent].compatible(curr context)

lb[v,agent] ← 0

t[v,agent] ← 0

ub[v,agent] ← infinity

context[v,agent] ←
if context.compatible(curr context)

lb[c val,msg.id] ← msg.lb

ub[c val,msg.id] ← msg.ub

context[c val,msg.id] ← msg.context

maintain child t invariant

maintain t invariant

do backtrack

do backtrack

if threshold = UB

agent value ← minimize UB(domain)

else if LB[agent value] > threshold

agent value ← minimize LB(domain)

for each agent in neighbors where agent.priority < agent priority

send(value, (agent id,agent value),agent)

maintain alloc invariant

if threshold == UB

if terminate or isRoot

curr context.add(agent id,agent value)

for each agent in children

send(terminate,curr context,agent)

terminate

send(cost,(agent id,curr context,LB,UB),parent agent)

3.2.3 Optimal asynchronous partial overlay

The optimal asynchronous partial overlay (OptAPO) algorithm adds an interest-
ing concept to the process of solving a DCOP: mediation. Each agent contains

35



an agent view that stores the names, values, domains and constraints from the
agent’s neighbors, a good list with the names of all other agents that have direct
or indirect constraints with the current agent, and a dynamic priority based
on the size of the good list. A larger good list means that the agent has more
knowledge about the problem, so it gets assigned a higher priority. Priority is
used to determine the agent that will mediate with other agents [14].

All agents start by selecting a value, and sending an init message to their
neighbors. This message contains the variable, priority, current value, domain
and constraints of the sender. A recipient of an init message adds the informa-
tion to its agent view, and adds the variable name to its good list if the received
variable has direct or indirect constraints with any of the other variables in the
agent view. After receiving all init messages, each agent proceeds to calculate
the minimum of the local subproblem defined by the constraints in the good list
by the sum of their constraint violation, using the values in the agent view [14].

The expected minimum of a local subproblem is always initialized to zero.
If the calculated minimum is greater than the expected minimum, the agent
starts a mediation session, which can be passive or active, depending on the
agent’s priority. If the agent has the highest priority among its neighbors with
suboptimal relationships, its session is active, otherwise, it is passive. An active
mediator can only participate in one active mediation at a time, and seeks
to update both the expected and the calculated minimum of its subproblem;
a passive mediator can participate in multiple mediation processes, and only
seeks to understand and update its expected minimum [14].

An active mediator uses its knowledge of the domains in lower priority agents
to determine the values that improve the calculated local minimum; then, the
mediator sends value? messages to all lower priority agents so they revise their
values. However, if the mediator is unable to find an assignment that improves
the calculated local minimum, it sends an evaluate? message to all agents on
its good list, containing the variables and constraints from its agent view [14].

An agent that receives an evaluate? message can reply with one of two
different messages: an evaluate! message containing variables and constraints
unknown to the mediator that sent the evaluate? message, if the agent is not
part of an active mediation; or, if the agent is part of an active mediation, it
will send a wait! message. The mediator that receives a wait! message excludes
the sender from the mediation session [14].

After the mediator receives all evaluate! or wait! messages from its good list,
it does a branch-and-bound search on the subproblem of the good list using the
received information to determine the new expected minimum. After finding the
value assignments for this new minimum, the mediator sends value? messages
to all agents that need to revise their local values, and finishes the mediation
session [14].

36



Algorithm 14. Optimal asynchronous partial overlay (OptAPO)

main:

agent val ← select random value

minimum ← 0

priority ← sizeof(neighbors)

med type ← active

med ← none

good list.add(agent val)

for each agent in neighbors

send(init,(agent id,priority,agent val,med type,dom,constr,path),agent)

init list ← neighbors

while not done

if msg.type = init

ag view.add(msg.contents)

if good agent.is neighbor(msg.id) where good list.contains(good agent)

good list.add(msg.id)

for each agent in ag view where not good list.contains(agent)

if agent.is neighbor(msg.id)

good list.add(agent)

priority ← sizeof(good list)

if not init list.contains(msg.id)

send(init,(agent id,priority,agent val,med type,dom,constr),msg.id)

else

init list.remove(msg.id)

check ag view

if msg.type = value?

ag view.update(msg.contents)

check ag view

if msg.type = wait!

counter ← counter - 1

if counter = 0

choose solution

if msg.type = evaluate!

preferences.record(msg.id,msg.labeled dom)

counter ← counter - 1

if counter = 0

choose solution

37



Algorithm 14. Optimal asynchronous partial overlay (OptAPO) (cont’d)

check ag view:

if not init list.is empty or med 6= null

return

v constr ← constr.get violated constr

new med ← null

if cost > minimum and neighbors.has consistent below(priority)

new med ← active

else if cost > minimum

new med ← passive

if new med == active and not neighbors.has active above(priority)

(new min,new value) ← minimize(dom)

if new min 6= minimum and changes in lo priority

agent val = new value

med ← null

new constr ← neighbors.get optimal neighbors

for all agent in ag view

send(value?,(agent id,priority,agent val,med,new constr), agent)

else

do med(new med)

else if new med = passive

do med(new med)

else if med 6= new med or (med = null and constr 6= new constr)

med ← new med

for all agent in ag view

send(value?,(agent id,priority,agent val,med,new constr), agent)

else if med = null

for all id k in ag view where id k not in constr and id k not in good list

for agent in path.to(id k) where agent not in ag view

send(init,(agent id,priority,agent val,med,dom,constr,path),agent)

init list(agent)

constr ← new constr

3.2.4 Dynamic programming optimization protocol

Unlike most algorithms, the dynamic programming optimization protocol (DPOP)
is less a search strategy and more a dynamic programming technique. DPOP
consists of three stages:

1. In the Pseudo-tree generation phase, agents assign priorities in such a way
that the resulting network represents a pseudo-tree, in which nodes can

38



have multiple children, there is one root node, all other nodes have one
parent, and there is a number of leaf nodes with no children [23].

2. In the UTIL propagation phase, all agents transmit their optimal utilities
based on their own list of values and the utilities received from children
agents. The UTIL message propagation starts from the leaf nodes, and
includes the cost of all possible assignments for the agent against all the
received utilities, creating a multidimensional utility matrix [23].

3. The VALUE propagation phase begins after the root agent receives all
UTIL messages and generates its utility matrix. Based on this matrix,
the root agent selects a value that minimizes the cost of the problem, and
sends value messages to its children to inform them of its decision. All
agents repeat these steps, until the leaf agents receive and process their
parents’ VALUE messages [23].

The most notable aspect of this algorithm is that the number of messages
is linear, and this is much smaller in comparison with other algorithms. How-
ever, a simple observation can also show the main weakness of this algorithm,
which is also found in many dynamic programming problems: memory growth
is exponential, and the size of the messages is proportional to the exponentially-
expanding utility matrix. Problems that contain a considerable number of
agents and possible values will have memory and communication problems not
because of the number of messages, but the size of them. Newer variants of
the algorithm, such as DPOP-ASP [10], are designed with the objective of re-
ducing the memory size and complexity of the messages, with comparable time
performance.

39



Algorithm 15. Dynamic programming optimization protocol (DPOP)

main:

if agent is first agent

create pseudotree

if sizeof(children) = 0

utility parent ← compute utility(parent,pseudo parents)

send(util,utility parent,parent)

while not done

if msg.type = util

utilities[msg.id] ← msg.utility)

if agent view.contains all(children)

if parent = null

optimum ← choose optimal(null,utilities)

for all child agent in children, pseudo children

send(value,optimum,child agent)

else

utility parent ← compute utility(parent,pseudo parents)

send(util,utility parent,parent)

if msg.type = value

agent view.add(msg.id,msg.value)

if agent view.contains all(parent, pseudo parents)

(agent value, optimum) ← choose optimal(agent view,utilities)

for all child agent in children, pseudo children

send(value,(agent value,optimum),child agent)

done ← true

3.2.5 No-commitment branch and bound

The No-commitment branch and bound algorithm (NCBB) uses a pseudo-tree
structure to guide the search. The first step, then, is to arrange the priorities of
the agents such that they have the properties of a tree, with each agent besides
the root agent having exactly one parent. Each agent maintains a costs map, a
list of unexplored trees and a list of values assigned to its subtrees (the anncdVals
list). After the initial priority assignment, parent agents compute upper and
lower bounds on their local solution using greedy search and transmit it to their
descendants using a SEARCH message [5].

An agent that receives a SEARCH message begins searching for a solution
by sending its value information to its children. What makes this algorithm
interesting is that, depending on the previous costs of its children subtrees and
the calculated upper bound on the optimum, it can send a different value to
each subtree, exploring different regions of the search space. The unexplored

40



and anncdVals keep track of which values have not been sent to which trees,
and which trees have been sent which values, respectively. Additionally, every
time an agent receives a value update from its parent, the child agent computes
all possible lower bounds on the cost, one for each value in the child agent’s
domain, stores them in the costs map, and sends to its parent the best agent
cost according to the selected assignment and the values sent by its children.
This mechanism improves the pruning capabilities of the algorithm, and allows
the higher priority agents to calculate tighter bounds on the optimal solution [5].

Algorithm 16. No-commitment branch and bound (NCBB)

main:

if parent 6= null

update context

while not done

do search

can stop ← update context

if parent = null or can stop

done ← true

costs[result value] ← 0

for all child agent in children

subtree search(result value, child agent)

for all child agent in children

send(stop,child agent)

update context:

while not done

receive(msg)

if msg.type = search

bound ← msg.bound

return false

if msg.type = value msg

agent cont.add(msg.id,msg.value)

lb anc ← ancestors min(agent id,agent cont,msg.id index)

lb anc 2 ← ancestors min(agent id,agent cont,msg.id index - 1)

new lb ← lb anc - lb anc 2

send(cost,new lb,msg.id)

if msg.type = stop

return true

41



Algorithm 16. No-commitment branch and bound (NCBB) (cont’d)

subtree search(val,child):

for all descendant in descendants[child]

send(value msg,val,descendant)

anncdVals[child] ← val

for all descendant in descendants[child]

receive(cost msg)

costs[val] ← costs[val] + cost msg.cost

if costs[val] > bound

prune

anncdVals[child] ←
return false

else

new bound ← bound - costs[val]

send(search,new bound,child)

return true

42



Algorithm 16. No-commitment branch and bound (NCBB) (cont’d)

do search:

idle ← children

cost ←
unexpl ←
anncdVals ←
min cost ← ancestors min(agent id,agent cont,sizeof(ancestors))

for all val in domain where agent cost(val,agent cont) ≤ bound + min cost

costs[val] ← agent cost(val,agent cont) - min cost

for all val in domain where costs[val] 6= null

unexpl[val] ← children

while not unexpl.empty or not anncdVals.empty

while not idle.empty

child ← idle.pop

val ← select unexpl value for child(child,unexpl)

unexpl[val].remove(child)

val c ← select unexpl value for child(child,unexpl)

if not subtreeSearch(val,child) and val c 6= null

idle.add(child)

if not anncdVals.empty

receive(cost msg)

val ← anncdVals[cost msg.id]

anncdVals[cost msg.id] ← null

costs[val] ← costs[val] + cost msg.cost

if costs[val] > bound

prune

else if unexpl[val].empty and not anncdVals.contains var(cost msg.id)

bound = costs[val]

result value = val

prune

val c ← select unexpl value for child(child,unexpl)

if val c 6= null

idle.add(child)

if parent 6= null

minimum ← minimize(costs)

send(cost,minimum,parent)

43



3.2.6 Asynchronous forward bounding

Like all other branch-and-bound algorithms for DCOP, asynchronous forward
bounding (AFB) uses the lower and upper bounds on the solution to guide
the search. Its main communication mechanism is current partial assignments
(CPAs), which are transmitted from higher to lower priority agents along with
the CPA’s cost, which is the sum of the constraint costs (violations). Addition-
ally, each agent keeps track of a lower bound for its CPA, along with a global
upper bound [6].

In general, AFB is very similar to the asynchronous forward-checking method
to solve DisCSP, with one key difference: the value change / backtracking con-
ditions is are based on the bounds on the global solution. An agent that sends
a CPA, also sends a copies of it to future agents requesting their lower bounds
on the cost, and using them to compute its own cost. If this lower bound is
greater than the global upper bound, the agent tries to reassign its value so its
cost is less than the global upper bound; if this is not possible, the agent then
sends a backtrack message to its preceding agent [6].

Algorithm 17. Asynchronous forward bounding

main:

bound ← inf

if agent is first agent

agent cpa ← generate cpa

assign cpa

while not done

if msg.type = fb cpa

lb estimate ← estimate lb(msg.pa)

send(fb est,(lb estimate,msg.pa),msg.id)

is msg.type = fb est

estimates.add(msg.lb estimate)

if cpa.cost + sum(estimates) ≥ bound

assign cpa

if msg.type = cpa msg

cpa ← msg.pa

temp cpa ← msg.pa

if temp cpa.contains(agent id)

temp cpa.remove(agent id)

if temp cpa.cost ≥ bound

do backtrack

else

assign cpa

44



Algorithm 17. Asynchronous forward bounding (cont’d)

assign cpa:

estimates ←
if cpa.contains(agent id)

cpa.remove(agent id)

new value ← null

for each value in domain

if cpa.cost + agent cost function(value) < bound

new value ← value

if value = null

do backtrack()

else

agent value ← new value

cpa.add(agent id,agent value)

if cpa.is complete

broadcast(new solution,cpa)

bound ← cpa.cost

assign cpa

else

send(cpa msg,cpa,next agent)

for each agent in unassigned

send(fb cpa,(agent id, cpa),agent)

do backtrack:

estimates ←
if agent is first agent

broadcast(terminate)

else

send(cpa msg,cpa,previous agent)

3.2.7 Concurrent forward bounding

Concurrent forward bounding (ConcFB) is an algorithm that, unlike many other
advanced DCOP methods, does not incorporate an asynchronous communica-
tion technique [20]. It is related to two DisCSP algorithms: asynchronous for-
ward backtracking [15] and concurrent dynamic backtracking [42].

ConcFB uses a synchronous forward bounding (SFB) as its main search
method. SFB is a synchronous version of asynchronous forward backtracking,
with the difference being that in the asynchronous version, an agent adds its
value to the consistent partial assignment (CPA) and sends it to the next agent
in the order, along with copies for all the unassigned agents, without waiting for
the feedback of the unassigned agents. In the synchronous version, the agent

45



adds its value to the CPA, sends a copy of it to all unassigned agents (excluding
the next agent in the order) and waits for their feedback. The agent sends the
CPA only after receiving all feedback messages from the unassigned agents and
revising its knowledge if needed [20].

Just like concurrent dynamic backtracking, in ConcFB an agent can choose
to split the domain of its variable into multiple subproblems assigned into search
processes, each one following its own SFB process, thus each subproblem is
processed and solved asynchronously and concurrently. All unassigned agents
that receive a copy of a CPA calculate a lower bound to the cost of their possible
solutions, which is sent to the originator of the CPA copy. This agent compares
this lower bound to the global upper bound, backtracking the search towards
the previous agent in the order of the sum of the costs of the received lower
bounds is greater than the upper bound. If an agent finds a new upper bound,
this value is broadcast to all agents, who compare it to their last known upper
bound and update it accordingly [20].

Algorithm 18. Concurrent forward bounding (ConcFB)

main:

if agent is first agent

root sp ← create sp(root id,domain)

root sp.splits ← create split set

init sp

while not done

if msg.type = cpa msg

sp id ← create sp(msg.sp id,domain)

sp id.cpa ← msg.cpa

sp id.lb list ← msg.lb list

sp id.lb list.remove(agent lb)

sp list.add(sp id)

assign cpa(sp id)

if msg.type = backtrack cpa

sp id ← sp list.get(msg.sp id)

current ← sp id.current

sp id.domain.remove(current)

if sp id.domain.is empty

do backtrack(sp id)

else

assign cpa(sp id)

46



Algorithm 18. Concurrent forward bounding (ConcFB) (cont’d)

if msg.type = lb request

agent lb ← minimize cost(msg.cpa,domain)

send(lb report,agent lb,msg.agent id)

if msg.type = lb report

sp id ← sp list.get(msg.sp id)

sp id.lb list[msg.agent id] ← msg.lb

received reports.add(msg.agent id)

if received reports = unassigned

if sp id.cpa.cost + sp id.current.cost + sum(sp id.lb list) < agent ub

cpa ← sp id.cpa

cpa.add(sp id.current)

send(cpa msg,(cpa,sp id.lb list),next agent)

else

sp id ← sp list.get(msg.sp id)

current ← sp id.current

sp id.domain.remove(current)

if sp id.domain.is empty

do backtrack(sp id)

else

assign cpa(sp id)

if msg.type = ub update

if msg.ub < agent ub

agent ub ← msg.ub

else

if msg.type = terminate

done ← true

return agent ub

init sp:

for i ← 1 to sizeof(domain)

sp id ← create sp(i,domain[i])

root sp.splits.add(sp id)

assign CPA(sp id)

47



Algorithm 18. Concurrent forward bounding (ConcFB) (cont’d)

assign cpa(sp id):

cpa ← sp id.cpa

new val ← select new value(domain)

current ← (agent id,new val)

if new val = null

send(backtrack cpa,cpa,previous agent)

else

cpa.add(agent id,new val)

cpa.cost ← cpa.cost + current.cost

for each agent in unassigned

send(lb request,cpa,agent)

3.2.8 Divide and coordinate subgradient algorithm

Most literature on DCOP algorithms focuses on global / complete optimization
search. The main drawback of these algorithms is the time it takes for them
to find a solution. However, some recent algorithms choose to trade accuracy
and obtain a good local optimum in exchange for speed. The divide and coor-
dinate technique is one of these algorithms, based on a two-stage process: first,
the agents divide the problem into local sub-problems that are solved individ-
ually by each agent, with agents potentially sharing variables; then, the agents
coordinate by sending information about their assignments, identifying disagree-
ments and making corrections and new problem subdivisions that improve the
level of agreement between the agents. The algorithm alternates between divide
and coordinate stages until all agents agree on their local solutions, or another
termination condition is met [31].

It is important to note that during the divide stage, each agent can mod-
ify its local subproblem, as long as all subproblems compose into the original
problem. The divide and coordinate subgradient algorithm employs Lagrangian
decomposition and subgradient methods during its divide stage to obtain dual
subproblems. During coordination, the agents attempt to reduce conflict by
modifying the subgradient parameters. This version of the algorithm alternates
between the two stages until the difference between the found solution and a pre-
defined bound is close to zero, or a user-defined number of divide-and-coordinate
iterations have passed without finding a solution [31].

48



Algorithm 19. Divide and coordinate subgradient algorithm (DaCSA)

main:

bound ← inf

lambda ← 0

solution ← null

best value ← -inf

cands ← null

subproblem ← create subproblem(vars,domain,utility rels)

while not termination condition

ub subproblem ← modify subproblem(subproblem, lambda)

(curr sol, curr min) ← solve subproblem(ub subproblem)

for each neigh in neighs

send(value,(curr sol[agent id],curr sol[neigh],curr min,cands),neigh)

received ←
while received.id list 6= neighs

received[msg.id] ← msg.contents

step size ← update step size

lambda ← update coord params(lambda,step size,curr sol)

if received.has better bound(bound)

bound ← received.best bound

if received.has better sol(best value)

best value ← received.best value

solution ← received.best solution

cands ← select candidate solutions(curr sol[agent id],cands)

return (solution,best value,bound)

3.2.9 Distributed upper confidence tree

The distributed upper confidence tree (DUCT) algorithm is an incomplete search
method that can quickly find near-optimal solutions to DPOP problems. It in-
corporates elements that are similar to complete algorithms, such as requiring
a pseudo-tree structure, but the idea behind its search pattern is very different.
Instead of trying to systematically calculate the best possible local cost, agents
maintain confidence bounds delimiting promising subspaces of the domain, se-
lecting a random sample from this higher‘-confidence subspace [21].

At the beginning of this algorithm, the root agent selects a value for its
variable and sends a CONTEXT message to its children. Each child agent
randomly selects a value from its domain and sends a CONTEXT message to
its children, repeating this process until the leaf nodes are reached. This creates
a search path in which all variables are assigned. Children nodes calculate their
cost based on their parent’s context and their own assignment, and send back

49



the information through COST messages, with the recipients adding their own
costs to all their childrens’ and sending COST messages further up the tree,
until reaching the root node that repeats the process [21].

What differentiates this algorithm is that each agent also keeps track of the
number of times each value has been selected, and the number of times a certain
context has been received. These two values are used to calculate a confidence
bound that reduces the search space into a promising subspace. It is a lower
bound that is adjusted over time to both limit the search space to while not
entirely discarding other subspaces [21].

Algorithm 20. Distributed upper confidence tree (DUCT)

main:

if agent is root

parent finished ← true

agent value ← sample()

agent context.add(agent id,agent value)

for each child in children

send(context,agent context,child)

else

parent finished ← false

while not done

if msg.type = context

if children.is empty

leaf min ← minimize constraint sum(domain,msg.context)

send(cost,(leaf min,leaf min),parent)

else

agent value ← sample(msg.context)

agent context ← msg.context

agent context.add(agent id,agent value)

for each child in children

send(context,agent context,child)

50



Algorithm 20. Distributed upper confidence tree (DUCT) (cont’d)

if msg.type = f-context

parent finished ← true

if termination condition

agent context.add(agent id,msg.context[agent id])

for each child in children

send(f-context,agent context,child)

else

agent value ← sample(msg.context)

agent context ← msg.context

agent context.add(agent id,agent value)

for each child in children

send(context,agent context,child)

if msg.type = cost

received.add(msg.id,msg.cost,msg.bound)

if received.id list = children

agent cost ← calculate cost(agent context,received.costs)

agent bound ← calculate bound(agent context,received.bounds)

if parent finished and termination condition

agent context.add(agent id,agent value)

for each child in children

send(f-context,agent context,child)

else if parent finished or agent cost = inf

agent value ← sample(msg.context)

agent context ← msg.context

agent context.add(agent id,agent value)

for each child in children

send(context,agent context,child)

else

send(cost,(agent cost,agent bound),parent)

3.2.10 D-Gibbs

The main drawback of DUCT is its memory requirement, as storing all contexts
requires an exponential amount of memory. Based on the message model of
DUCT, the Distributed Gibbs algorithm also constructs a pseudo-tree and uses
random value selection; however, it takes inspiration from the Gibbs sampling
method (a Markov chain algorithm used to approximate joint probability dis-
tributions) to determine the value of all agents without storing all the historical
contexts along with their frequencies.

In D-Gibbs, all agents contain three values: the current value, the previous

51



value, and the value corresponding to the best cost found so far. All agents
also maintain a context with all the values of its neighbors, and a time index to
indicate the number of iterations the agent has sampled. It also maintains two
delta values: the difference between the current solution and the best solution
from the previous iteration, and the difference the best solution of the current
iteration and the best solution of the previous iteration.

At the beginning of the algorithm, all agents select their default values. The
root samples its initial value based on a probability distribution, and sends a
VALUE message to its neighbors. An agent that receives a VALUE message
stores that value in their respective context, and, if the sender was the agent’s
parent, samples its value and propagates it to its neighbors with its own re-
spective VALUE message, propagating these messages until the leaves of the
tree sample their values. Leaf agents send a BACKTRACK message to their
parents, and in turn they propagate their own BACKTRACK message until
the root receives all responses from its neighbors, at which point the algorithm
completes one iteration.

The delta values are transmitted as part of both the VALUE and BACK-
TRACK messages. An agent that receives a VALUE message and samples its
value will calculate the difference between the current solution and the best
solution from the previous iteration by adding to it its own difference in local
quality. If the calculated difference is larger than the difference to the best
solution between iterations, this value is replaced, along with the agent’s own
best value found. This update is transmitted to the rest of the agents through
VALUE and BACKTRACK messages. With this, every time an improved so-
lution is found, all agents receive the updated value by the next iteration. The
algorithm terminates either after a given number of iterations, or when no im-
provements to the solution are found after a number of consecutive iterations.

52



Algorithm 21. Distributed Gibbs (D-Gibbs)

main:

current value ← init value

prev value ← init value

best value ← init value

agent context.add(agent id,current value)

for each n agent in neighbors

n value ← create assumption(n agent)

agent context.add(n agent.id,n value)

prev diff ← 0

best diff ← 0

iter ← 0

best iter ← 0

if agent is root

iter ← iter + 1

do sampling

while not done

if msg.type = value

agent context.update(msg.id,msg.value)

if msg.id = parent

wait for pseudoparents

iter ← iter + 1

if msg.best iter = iter

best value ← current value

else if msg.best iter = iter - 1 and msg.best iter > best iter

best value ← prev value

prev diff ← msg.prev diff

best diff ← msg.best diff

best iter ← msg.best iter

do sampling

if agent is leaf

send(backtrack,(prev diff,best diff),parent)

53



Algorithm 21. Distributed Gibbs (D-Gibbs) (cont’d)

if msg.type = backtrack

prev diff list[iter,msg.id] ← msg.prev diff

best diff list[iter,msg.id] ← msg.best diff

if prev diff list[iter].agents = children

prev diff ← sum(prev diff list[iter].values) - . . .

. . . (sizeof(children) - 1) × prev diff

best diff new ← sum(best diff list[iter].values) - . . .

. . . (sizeof(children) - 1) × best diff

if best diff new > best diff

best diff ← best diff new

best value ← current value

best iter ← iter

if agent is root

prev diff ← prev diff - best diff

best diff ← 0

iter ← iter + 1

do sampling

else

send(backtrack,(prev diff,best diff),parent)

do sampling:

prev value ← current value

current value ← get random sample

prev diff ← prev diff + sum gain(current value,domain) - . . .

. . . sum gain(prev value,domain)

if prev diff > best diff

best diff ← prev diff

best val ← current val

best iter ← iter

for each n agent in neighbors

send(value,(current value,current diff,best diff,best iter),n agent)

4 Applications

The most common problem used to test DisCSP and DCOP algorithms are
classic CSP problems such as n-queens or graph coloring. These CSP problems
are extended into a distributed version in which the number of agents equals
the number of variables, and while they provide a good initial benchmark, they
can still be considered toy problems with little actual application in solving
real-world problems.

54



This section section shows some real-world applications and benchmarks for
DisCSP and DCOP found in the literature.

4.1 Sensor networks

This area includes multiple applications of both DisCSP and DCOP. A sensor
network features an array of interconnected sensor units that has to coordinate
to achieve a specific objective. The type of sensor network problem determines
the variables in play, and whether the problem is a DisCSP or DCOP problem.
For example, a group of static sensors used to keep track of airborne objects
works only on a fixed area, under limited amount of power. Additionally, these
sensors must coordinate to create a schedule, so their radio transmissions to
each other receive no interference from other sensors [41].

There is at least one test bed for sensor networks, SensorDCSP [2]. This
platform simulates a mobile-sensor problem: there are multiple sensors and mo-
bile targets. The sensors are pair-wise disjoint and have two sets of constraints:
visibility (can the sensor detect a mobile?), and compatibility (how close is the
sensor to other sensors who can detect the mobile?). Thus, the objective of the
SensorDCSP problem is to find cliques of 3 sensors that are detecting a mobile
target. The most simple version of this problem, GSensorDCSP, uses a sensor
grid, in which the agents observe only the area around their four quadrants [2].

4.2 Scheduling

Scheduling is a well-known problem in the CSP literature, and has been used
extensively to create and test new algorithms. However, there exist what is
known as distributed scheduling or distributed time-tables, in which a schedule or
time-table is generated by the cooperation and negotiation of multiple agents. A
perfect example of this problem is university course schedules: each department
has different resources, requirements and restrictions, and ultimately they must
communicate to produce a timetable by negotiating using public information
and keeping their own private information. All of this without considering
complications that arise from sharing resources between departments, such as
shared courses and shared faculty [9].

Another prevalent case in the literature is meeting scheduling. In this prob-
lem, a group of agents needs to agree on a time for a meeting. Each agent
maintains its own private schedule, but must make certain availability infor-
mation known to other agents. All agents, then, must negotiate by trading
potential meeting times until they can all reach an agreement [38].

4.3 Wireless network planning

Another area of application is in wireless network planning. One particular
area focuses on interference found in wireless area networks, caused by trans-
mission channel assignments. This is not a problem for networks in which all
the wireless access points belong to the same network administrator; however,

55



when there are multiple access points belonging to multiple administrators, the
channel selection of the access points can cause interference and wireless service
degradation. Each access point, then, serves as an agent, with every two pair of
agents within the same range sharing a constraint on their wireless channels [18].

4.4 Vehicle routing / service delivery optimization

Vehicle routing is a classic applied CSP/COP. The particular version of this
problem that can be solved using DCOP is called the multiple-depot vehicle rout-
ing problem. It is based on a delivery company that has subcontracted delivery
operations to multiple subcontractors, and must coordinate the assignment of
deliveries to ensure they will be done on time. However, each subcontractor also
has to try to make more deliveries, maximizing their profits. Each contractor is
physically separated from the others, has its own local optimal objective, and
they all have inter-agent scheduling constraints [11].

5 Observations

5.1 Other partial / incomplete algorithms

Most algorithms in DCOP focus on complete search. That is, they try to find
the global minimum of the cost. This process can be time consuming, and
in many cases the problem could be considered solved with a near-minimum.
The algorithms that focus on finding a local minimum are called incomplete
search DCOP algorithms. The most effective of these have been outlined above;
however, these are not the only ones. In general, incomplete search DCOP al-
gorithms developed in the last ten years focus on stochastic search methods [41]
and/or alternative measures of optimality such as k-optimality [22]. Other ex-
perimental algorithms are either focused on solving specific problems [13], or
show interesting techniques with little in the way of concrete results [27].

5.2 Challenges

While the field itself emerged in the early 1990’s, it saw very little growth
until the 2000’s, and even to this day it faces considerable challenges in its
development.

5.2.1 Lack of innovation

Truly innovative methods are scarce in the field. Most are either distributed
adaptations of existing CSP methods, or enhancements of other distributed
algorithms. Different groups work on their respective algorithms, often reach-
ing similar communication and coordination methods. Rarely do DisCSp and
DCOP algorithms work outside of pseudo-tree networks.

56



5.2.2 Lack of benchmarking and comparisons

There are few attempts at creating benchmarks for DisCSP/DCOP. SensorD-
CSP [2] is likely the most established one, used to test multiple algorithms that
have been developed since. Additionally, nearly all algorithms are compared
against the most basic method in its class: DisCSP algorithms are always com-
pared with ASB, while DCOP algorithms are compared with either SynchBB
or the original ADOPT. There is no real sense of what could be considered the
most advanced algorithm in the field, as all algorithms are presented as having
improvements over old algorithms: ASB was published in 1992, SynchBB in
1997 and ADOPT in 2005.

5.2.3 Insufficient real world applications

The four applications mentioned are not the only ones, but are the most preva-
lent throughout the literature. The main problem is that few of them have
actually found a real world application for general application methods, and the
only tests they have carried out are through the use of simulations. Specific
methods designed to solve individual, distributed problems are interesting but
never achieve enough recognition or traction in the field [26].

6 Conclusions

The field of distributed constraint satisfaction contains multiple interesting
ideas, rife with potential applications. However, one look at its history, de-
velopment and techniques show some degree of stagnation: innovation is rare,
and active applications even rarer. There is no consensus on what constitutes
the best algorithms in the field, or even a robust set of benchmarks to mea-
sure the effectiveness of the algorithms, as found in other related fields, such
as centralized CSP or optimization. However, as more decentralized networked
technologies are developed, the field might yet see an unexpected resurgence,
or change in priorities, with new research being motivated by newer potential
applications.

References

[1] Krzysztof Apt. Principles of constraint programming. Cambridge Univer-
sity Press, 2003.

[2] Ramón Béjar et al. “Sensor networks and distributed CSP: communica-
tion, computation and complexity”. In: Artificial Intelligence 161.1 (2005),
pp. 117–147.

[3] L. Carlozo. Why college students stop short of a degree.
http://johngress.com/2012/03/27/why-college-students-stop-

short-of-a-degree.

57



[4] Martine Ceberio, Hiroshi Hosobe, and Ken Satoh. “Speculative constraint
processing with iterative revision for disjunctive answers”. In: Computa-
tional Logic in Multi-Agent Systems. Springer, 2006, pp. 340–357.

[5] Anton Chechetka and Katia Sycara. “No-commitment branch and bound
search for distributed constraint optimization”. In: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent sys-
tems. ACM. 2006, pp. 1427–1429.

[6] Amir Gershman, Amnon Meisels, and Roie Zivan. “Asynchronous forward
bounding for distributed COPs”. In: Journal of Artificial Intelligence Re-
search 34.1 (2009), p. 61.

[7] Katsutoshi Hirayama and Makoto Yokoo. “Distributed partial constraint
satisfaction problem”. In: Principles and Practice of Constraint Programming-
CP97. Springer, 1997, pp. 222–236.

[8] Joxan Jaffar and Michael J Maher. “Constraint logic programming: A
survey”. In: The journal of logic programming 19 (1994), pp. 503–581.

[9] Eliezer Kaplansky and Amnon Meisels. “Negotiation among scheduling
agents for distributed timetabling”. In: Proceedings of the 5th Interna-
tional Conference on Practice and Theory of Automated Timetabling, Pitts-
burgh. Citeseer. 2004, pp. 517–520.

[10] Tiep Le et al. “ASP-DPOP: solving distributed constraint optimization
problems with logic programming”. In: Proceedings of the 2014 interna-
tional conference on Autonomous agents and multi-agent systems. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. 2014,
pp. 1337–1338.

[11] Thomas Léauté, Brammert Ottens, and Boi Faltings. “Ensuring privacy
through distributed computation in multiple-depot vehicle routing prob-
lems”. In: Proceedings of the ECAI” 10 Workshop on Artificial Intelligence
and Logistics (AILog” 10). EPFL-CONF-149797. 2010.

[12] Allan R Leite, Fabŕıcio Enembreck, and Jean-Paul A Barthès. “Distributed
constraint optimization problems: Review and perspectives”. In: Expert
Systems with Applications 41.11 (2014), pp. 5139–5157.

[13] Fabiana Lorenzi et al. “Improving recommendations through an assumption-
based multiagent approach: An application in the tourism domain”. In:
Expert Systems with Applications 38.12 (2011), pp. 14703–14714.

[14] Roger Mailler and Victor Lesser. “Solving distributed constraint optimiza-
tion problems using cooperative mediation”. In: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 1. IEEE Computer Society. 2004, pp. 438–445.

[15] Amnon Meisels and Roie Zivan. “Asynchronous forward-checking for DisC-
SPs”. In: Constraints 12.1 (2007), pp. 131–150.

[16] Pragnesh Jay Modi et al. “ADOPT: Asynchronous distributed constraint
optimization with quality guarantees”. In: Artificial Intelligence 161.1
(2005), pp. 149–180.

58



[17] Pierre Monier, Sylvain Piechowiak, and Rene Mandiau. “A complete al-
gorithm for DisCSP: Distributed Backtracking with Sessions (DBS)”. In:
Second International Workshop on: Optimisation in Multi-Agent Systems
(OptMas), Eigth Joint Conference on Autonomous and Multi-Agent Sys-
tems (AAMAS 2009), Budapest, Hungary. 2009.

[18] Tânia L Monteiro et al. “A multi-agent approach to optimal channel as-
signment in wlans”. In: Wireless Communications and Networking Con-
ference (WCNC), 2012 IEEE. IEEE. 2012, pp. 2637–2642.

[19] Paul Morris. “The breakout method for escaping from local minima”. In:
AAAI. Vol. 93. 1993, pp. 40–45.

[20] Arnon Netzer, Alon Grubshtein, and Amnon Meisels. “Concurrent forward
bounding for distributed constraint optimization problems”. In: Artificial
Intelligence 193 (2012), pp. 186–216.

[21] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. “DUCT: An
upper confidence bound approach to distributed constraint optimization
problems”. In: Proceedings of the National Conference on Artificial Intel-
ligence. Vol. 1. EPFL-CONF-197504. 2012, pp. 528–534.

[22] Jonathan P Pearce, Milind Tambe, and Rajiv Maheswaran. “Solving mul-
tiagent networks using distributed constraint optimization”. In: AI Mag-
azine 29.3 (2008), p. 47.

[23] Adrian Petcu and Boi Faltings. A scalable method for multiagent con-
straint optimization. Tech. rep. 2005.

[24] Patrick Prosser. “Hybrid algorithms for the constraint satisfaction prob-
lem”. In: Computational intelligence 9.3 (1993), pp. 268–299.

[25] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

[26] Ken Satoh, Philippe Codognet, and Hiroshi Hosobe. “Speculative Con-
straint Processing in Multi-agent Systems”. English. In: Intelligent Agents
and Multi-Agent Systems. Ed. by Jaeho Lee and Mike Barley. Vol. 2891.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003,
pp. 133–144. isbn: 978-3-540-20460-2. doi: 10.1007/978-3-540-39896-
7_12. url: http://dx.doi.org/10.1007/978-3-540-39896-7_12.

[27] Samaneh Hoseini Semnani and Kamran Zamanifar. “The power of ants
in solving Distributed Constraint Satisfaction Problems”. In: Applied Soft
Computing 12.2 (2012), pp. 640–651.

[28] Marius C Silaghi and Makoto Yokoo. “ADOPT-ing: unifying asynchronous
distributed optimization with asynchronous backtracking”. In: Autonomous
Agents and Multi-Agent Systems 19.2 (2009), pp. 89–123.

[29] Marius-Călin Silaghi and Boi Faltings. “Asynchronous aggregation and
consistency in distributed constraint satisfaction”. In: Artificial Intelli-
gence 161.1 (2005), pp. 25–53.

59



[30] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. “Asynchronous
search with aggregations”. In: AAAI/IAAI. 2000, pp. 917–922.

[31] Meritxell Vinyals et al. “Divide-and-coordinate: DCOPs by agreement”.
In: Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1. International Foundation for
Autonomous Agents and Multiagent Systems. 2010, pp. 149–156.

[32] X. Wang and M. Ceberio. “Fuzzy Measure Extraction for Predicting At-
Risk Students”. In: Proceedings of 2nd World Conference on Soft Com-
puting. Baku, Azerbaijan, 2012.

[33] William Yeoh, Ariel Felner, and Sven Koenig. “BnB-ADOPT: An asyn-
chronous branch-and-bound DCOP algorithm”. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-
Volume 2. International Foundation for Autonomous Agents and Multia-
gent Systems. 2008, pp. 591–598.

[34] William Yeoh and Makoto Yokoo. “Distributed problem solving”. In: AI
Magazine 33.3 (2012), p. 53.

[35] Makoto Yokoo. “Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems”. In: Principles and Practice of
Constraint ProgrammingCP’95. Springer. 1995, pp. 88–102.

[36] Makoto Yokoo. “Weak-commitment search for solving constraint satisfac-
tion problems”. In: AAAI. Vol. 94. 1994, pp. 313–318.

[37] Makoto Yokoo and Katsutoshi Hirayama. “Distributed breakout algo-
rithm for solving distributed constraint satisfaction problems”. In: Pro-
ceedings of the Second International Conference on Multi-Agent Systems.
1996, pp. 401–408.

[38] Makoto Yokoo, Koutarou Suzuki, and Katsutoshi Hirayama. “Secure dis-
tributed constraint satisfaction: Reaching agreement without revealing
private information”. In: Principles and Practice of Constraint Programming-
CP 2002. Springer. 2002, pp. 387–401.

[39] Makoto Yokoo et al. “Distributed constraint satisfaction for formalizing
distributed problem solving”. In: Distributed Computing Systems, 1992.,
Proceedings of the 12th International Conference on. IEEE. 1992, pp. 614–
621.

[40] Makoto Yokoo et al. “The distributed constraint satisfaction problem: For-
malization and algorithms”. In: Knowledge and Data Engineering, IEEE
Transactions on 10.5 (1998), pp. 673–685.

[41] Weixiong Zhang et al. “Distributed stochastic search and distributed break-
out: properties, comparison and applications to constraint optimization
problems in sensor networks”. In: Artificial Intelligence 161.1 (2005), pp. 55–
87.

[42] Roie Zivan and Amnon Meisels. “Concurrent search for distributed CSPs”.
In: Artificial Intelligence 170.4 (2006), pp. 440–461.

60



[43] Roie Zivan and Amnon Meisels. “Synchronous vs asynchronous search on
DisCSPs”. In: Proceedings of the First European Workshop on Multi-Agent
Systems (EUMA). 2003.

61


